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Abstract 

The poultry industry is one of the most efficient and flourishing sectors of 

agriculture that not only provides cheaper protein (eggs, meat) but also 

contributes heavily to the country's economy. There are several challenges 

faced by the poultry industry worldwide. Among all these challenges, 

disease management has been a major problem. Infectious bronchitis 

viruses (IBVs) are RNA-based viruses having high recombination and 

mutation rates. IBVs are gamma coronaviruses affecting the upper 

respiratory tract of chickens. Due to the high rate of mutation and 

recombination, IBVs are very difficult to properly diagnose and control. 

Some serotype IBVs are extremely resistant, causing high economic losses 

in the form of excessive use of antibiotics after the eruption of secondary 

pathogens and mortality, but some serotype IBVs are limited to morbidity 

losses only. There are some control methods for IBVs and practicing 

effective vaccination and biosecurity measures is highly recommended. 

Exposure of IBVs to chicken flock postulates gateway to secondary 

pathogens, which also pass on to coming generations. This review paper 

provides updated research tools and methods to diagnose and control IBVs.    
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Introduction 

Infectious bronchitis was first recognized 91 years 

ago in 1930's in the United States. Today, it’s still 

challenging for the poultry industry around the 

globe, and negatively affecting economics and the 

food supply chain resulting in high prices. Initially, 

symptomatic illustrations described its mild form 

of the infection called laryngotracheitis (ILT) but 

in 1936 Beach and Schalm [1] confirmed that the 

virus strain that caused infectious bronchitis was 

different from ILT in chicks. The first infectious 

bronchitis virus (IBV) vaccine was developed in 

1937 in the United States [2].  In 1990, the use of 

molecular techniques revolutionized IBV 

diagnosis [3]. Its variants are distributed 

(serotypes and genotypes)  in all continents except 

Antarctica [4, 5]. IBV was first documented by 

Schalk and Hawn in 1931[6].  

Avian gamma coronavirus (Gamma-CoV) is 

the causal organism of infectious bronchitis virus, 

which is round to pleomorphic in shape [3]. It's one 

of the four genera (alpha-CoV, beta-CoV, gamma-

CoV and delta-CoV [7]. Gamma-CoV are 

enveloped, positive-strand RNA viruses that 

infect birds, mammals and humans having the 

largest of all RNA virus genomes (27-31kb) in size, 

capped, and polyadenylated. It is largest among 

positive-sense single-stranded RNA viruses and 

the leader RNA (65-89 bp) at the 5' end of the 

genome is also present at the end of each sub-

genomic RNAs [7]. Virions constitute spike (S), 

envelope (E), membrane (M) and nucleocapsid (N) 

structural proteins [8]. The S glycoprotein is a 

trimer composed of subunits S1 and S2 having 

roughly 520 and 625 amino acids, subsequently. 

The viral binding domain is located on S1 subunit 

of S protein [9]. The IBV lacking S1 subunit is not 

virulent nor can cause much mortality [10]. IBV 

serotypes have unique variability in S1 subunit 

sequence of S protein, i.e., some serotypes differ 

20-25%, while others up to 50% [11]. Gamma-

CoV attaches and enters the host cell by its spikes 

that is a glycoprotein in nature, 20 nm in length [8]. 

These spikes give IB virus crown shape, hence 

called coronavirus. E protein is miner essential 

protein and its function is the aggregation of the 

virus [12]. Glycoprotein M springs around viral 

coating thrice outside with a portion of NH3. 

Phosphoprotein N envelops the viral RNA genome 

to make circular nucleocapsid in the virus and 
interplay with M and E proteins for virus 

aggregation (Fig. 1) [3]. 

Why infectious bronchitis virus is so 
difficult to control? 

Since its discovery in 1930, infectious bronchitis 

remained a continuous challenge for the poultry 

industry causing huge economic losses in form of 

mortality and welfare of birds (broilers, layers, 

pullets, rosters, breeders). From the aspect of 

emerging and re-emerging diseases around the 

globe in poultry production, infectious bronchitis 

remains centered. There are several reasons for its 

lethality. First and foremost is that its genetic 

material is RNA [3]. As they are RNA based 

viruses, their control is most challenging. If a 

proper vaccine is available at the specific timing of 

disease eruption, production flock can be protected 

but if there is a lack in its strain or variant diagnoses, 

a certain lapse in vaccine availability or vaccine 

application will cause virus eruption and huge 

economic loss. The second major reason is poor 

diagnosis. As mentioned before, until a specific 

strain or variant of infectious bronchitis is 

identified causing disease eruption and other 

related issues, vaccination is useless. So, the first 

thing is to identify the strain and plan the 

vaccination schedule accordingly. The third 

potential reason is poor, improper, or 

unprofessional vaccination jobs. In such cases, 

among a flock, birds that remained unvaccinated 

become amplifiers of viruses causing infectious 

bronchitis virus to spread. Thumb rule against 

disease protection is surveillance of commercial 

poultry birds, i.e., maintaining routine check and 

balance against disease and especially in case of 

infectious bronchitis, it is unavoidable. 

Geographical location and higher concentration of 

poultry farms and poultry production units cause 

birds prone to infectious diseases and infectious 

bronchitis attacks. Poultry producers should avoid 

all contact with other sources of poultry and 

markets [13]. Recent studies depict that a new 

variant of infectious bronchitis follows certain 

routes in the area having a high concentration of 

poultry birds. Being an airborne virus, it can easily 

float from one farm to another. Lack or ignoring 

basic poultry husbandry practices stands an 

important reason for the infectious bronchitis 

eruption. Vaccination is a powerful tool to ensure 

poultry health but without following a holistic 

approach, e.g., biosecurity measures and sublime 

management and combing all husbandry practices, 

IBV control becomes critical. The immune status 

of birds also plays important role in infectious 

https://en.wikipedia.org/wiki/Alphacoronavirus
https://en.wikipedia.org/wiki/Betacoronavirus
https://en.wikipedia.org/wiki/Viral_envelope
https://en.wikipedia.org/wiki/Mammal
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Fig. 1 Gamma coronavirus: shape and structure [88]. 

 

bronchitis prevalence. Broilers, layers and breeders 

are prone to viral diseases and if they get these 

viruses, it's very easy for bacteria and dust particles 

to penetrate deep into tissues of the respiratory tract. 

Flock mortality and morbidity losses are also high 

in infectious bronchitis because other opportunistic 

secondary pathogens like Escherichia coli, 

pneumonia, mycoplasma, airsaculitis, peritonitis 

and the false layer syndrome take advantage of 

infection [14, 15].   

Clinical Signs 

Infectious bronchitis causes primary pathogen in 

the upper respiratory tract, causing gasping, watery 

eyes, mucus in the trachea and coughing [14]. 

Primary infection of infectious bronchitis is a 

gateway to secondary bacterial infections as 

mentioned above. Poultry birds of all ages are 

affected by IBV. It affects embryonating eggs, 

resulting in crippled, dwarf and infected embryos 

[3]. Body weight of bird drops due to reduced feed 

intake. External and internal egg quality decreases, 

showing deformed and inferior eggshell, watery 

albumin [16]. Kidneys are severely affected having 

kidney lesions only with some types of virus, e.g., 

TW-like IBV strain GD [17]. Tubules observed in 

swollen, pale kidneys, liver, heart [18] and ureters 

expanded with urates [3]. Along with other organs, 

the reproductive system of birds also gets affected 

both in hens and cockerels. Replication of IBV in 

the oviduct causes disruption in calcium deposition 

in eggshells, resulting in deformed eggs [18]. In 

pullets and hens, cysts of varying sizes, protruding 

in the right oviduct, condensed oviduct, fibrin clots 

in magnum and uterus and yolk peritonitis in 

infected birds occurred [16]. Zhong et al. observed 
epithelial necrosis and desquamation, epithelial 

edema, follicular edema, degeneration of vacuole, 

congestion and absence of lumen and epithelium 

cells [19]. Deleterious effects of infectious 

bronchitis on the reproductive health of roosters 

and cockerels need serious attention and are 

lacking. Testicular histopathological findings 

depicted micro-bleeds, tubular degeneration, focal 

necrosis and vascular congestion [20]. In some 

reports, the live attenuated and killed IBV vaccine 

increased the incidence of epididymal stones, 

decreasing sperm and testosterone concentration 

[21, 22]. In addition, the use of a live attenuated 

IBV vaccine increases the incidence of epididymal 

stones in roosters, resulting in decreased sperm 

production and decreased serum testosterone 

concentration [23]. Reproductive tract disruption 

in male and female birds largely depends on viral 

load, infection period and host specific factors. 

These deleterious effects on the reproductive tract 

of birds results in poor hatchability, low breeding 

values and infected semen in production flocks [24]. 

Association of COVID-19 with 
infectious bronchitis 

COVID-19 is caused by SARS-CoV-2  that belongs 

to the beta-CoV group [25]. Viruses in the beta-

CoV group don't cause infection in poultry, while 

avian CoV, grouped in Gamma-coronavirus, do not 

affect humans [26]. According to de Wit and Cook 

[27], gamma- and delta-CoV are found in birds. 

There is no evidence that SARS-CoV-2 will affect 

poultry [28-29].  

Transmission 

Being an air-born virus, it's extremely contagious 

and spreads among birds in a flock [30]. Animal 

husbandry practices should be strictly followed, i.e., 

biosecurity, proper and timely vaccination, 

avoiding outsiders and wandering birds, e.g., goose, 

and swans, poultry house disinfection and keeping 

ammonia levels in control. Within 24 hours post-

infection, infectious bronchitis infected chickens 

begin to show respiratory signs of disease in 

experimentally challenged birds, but natural 

infection can take longer for signs. Infectious 

bronchitis is an upper respiratory tract disease and 

high concentration of viruses in the respiratory 

tract causes aerosol droplets to transmit viruses 

making viral worse. During the initial 3-5 days of 

infectious bronchitis attack, there is the highest 

concentration of IBV  in the trachea [3]. If birds are 

properly vaccinated and protective measures are 

adopted timely, IBV load in the trachea decreases 
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drastically [31] reducing secondary pathogen 

attack. Viruses are also excreted in uric acid from 

the kidneys and in droppings [27]. Contaminated 

and wet litter not only causes viral transmission 

from flock to flock but sticks with caretaker 

personnel shoes and clothing [3] inviting other 

viral, bacterial and fungal pathogens. Fomites, a 

higher concentration of poultry birds in an area and 

migratory birds like geese, pigeons, wander, 

vultures can be potential sources of IBV breakout. 

Some closely related IBV strains were identified in 

wild birds [32]. Vertical transmission of IBV in a 

day-old chicks was observed whose mothers (hens) 

were experimentally infected with IBV [33]. IBV 

was also isolated from semen of male breeder flock 

confirming the possibility of  IBV infection in the 

oviduct of the vulnerable hen [34]. 

Control strategies 

Effective diagnosis and vaccination: a sublime 

tool against infectious bronchitis 

Vaccination is a pillar in commercial pullet health 

and welfare [35]. IBV has limited proofreading 

capability, i.e., it replicates rapidly and makes 

changes that are difficult to cope up. Further, these 

alterations pass on generations where IBV 

replicates more abruptly even in the phase of 

vaccination  [36, 37]. As mentioned before, to 

ensure flock health, we have to adopt a holistic 

approach, among which, vaccination stands 

centered [30, 34]. Extensive IBV vaccination 

doesn't ensure flock protection unless the right 

combination of vaccines and diagnostics are 

practiced, e.g., in Saudi Arabia, persistent 

outbreaks of IBV were observed in broiler and 

layer flocks despite extensive vaccination [38]. The 

problem with the right application of vaccines at 

the right time is that IBV has hundreds of genetic 

variants and the solution is to use a combination of 

vaccines that can give a broader immune response 

against circulating field viruses unless we have 

homologous vaccine [39]. IBV can occur in various 

serotypes that differ in their surface proteins or 

spikes. Some serotypes show marked differences, 

but others have similarities in their structure and 

are classified into groups. Certain serotypes are 

used as a vaccine because they induce immunity 

against more than one serotype called as 

protectotypes, and this concept is called as 

heterologous vaccination [40-42]. To find the right 

combination of vaccines against IBV, the virus 

neutralization study gives more effective vaccine 

indication, but it is time- and cost-consuming 

methodology. Another method is genetic testing in 

which spike protein sequences elaborates closely 

related specific IBV strains, on its basis, 

vaccination plan can be decided accordingly. The 

IBV modified live vaccines are more effective than 

inactivated vaccines as their application in the 

hatchery is more efficient and easier to monitor [43, 

44]. In both hatchery and field, live attenuated 

vaccines are more cost and time effective. In layer 

birds, attenuated vaccines can be applied between 

4-6 weeks depending on IBV virulence [39].  

Being enveloped virus, IBV vaccine strains are 

fragile and easily affected by shearing forces and 

temperature. An important aspect is that IBV 

vaccine need to keep cool before it warms at room 

temperature to attain the full titer of the vaccine. 

IBV attack is predominant in winter, so major 

mistake made by poultry producers at farms is to 

cut vaccine dose to save some money and to 

prevent vaccine reactions because in summer IBV 

doesn't seem much predominant resulting in 

inadequate immunity. Therefore, the birds remain 

susceptible to disease, allowing field viruses to 

replicate which is termed as genetic drift. These 

field viruses in under-vaccinated or poor-

vaccinated birds replicate over time, resulting in 

the emergence of new strains of IBV. The volume 

of vaccine also matters, e.g., in America, IBV 

vaccine dose of 7 ml/100 chicks was practiced for 

a long time that is insufficient to immunize chicks. 

The droplet size of vaccine also matters, so, the 

recommendation is to use fine droplets and the dose 

should be 14 ml/100 chicks to get optimum 

protection against IBV. A fixed pressure of 100-

300 microns for 10-15 minutes over chicks or 30-

40 cm above chick’s boxes is recommended. 

Chicks boxes should be allowed to dry 15 minutes 

before dispatch from the hatchery [35]. In layers 

and breeders, the recommendation is to mix the 

IBV vaccine in drinking water. Droplet behavior, 

size, water quality, climatic conditions, house 

layout, site (hatchery/farm), vaccinator experience, 

equipment (type of sprayer and sanitized) affect 

successful spray of IBV vaccine [35]. The accurate 

amount and timing of vaccine ensure broad 

spectrum flock protection [45-47].  

Molecular diagnostics 

Real-time PCR is a powerful tool to diagnose IBV 

in comparison with other closely related diseases. 
Certain RT-PCR tests can also distinguish types of 

viruses, i.e., they are vaccine-related or field-related 
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which helps to match their genetic sequences for 

better vaccination plans. Avian mycoplasmosis, 

infectious laryngotracheitis, Newcastle disease and 

avian influenza have similar clinical signs like 

infectious bronchitis, so preventive measures 

should be taken to differentiate appropriately [48-

54]. Now vaccine-related viruses and pathogenic 

viruses can be screened. Hemagglutination 

inhibition, virus isolation, virus neutralization test 

and enzyme-linked immunosorbent assay (ELISA) 

are also in practice for virus detection and 

confirmation [3,11, 55-57]. Single-step-real-time-

RT-LAMP (loop-mediated isothermal 

amplification assay) serves as a cost-effective 

molecular and semi-quantitative way for IBV [58]. 

Microarray analysis of dendritic cells 

Dendritic cells are accessory cells (also called 

antigenic presenting cells) of the immune system 

that are responsible for processing antigens and 

presenting them to T cells [59]. Virus neutralization,  

recognition, messages to and from between innate 

and adaptive immune systems are their vital 

functions [60]. Avian dendritic cells can induce 

both acquired and innate immunity and are present 

in primary and secondary lymphoid organs [59]. 

Maturation of dendritic cells is inevitable in 

immunity development and invading viruses have a 

plan of action to target this process [61, 62]. Among 

non-coding RNA's, miRNA's are not only key 

regulators of the immune system [63, 64], but also 

shape defensive mechanisms against invading 

viruses [65, 66]. A novel mechanism was elucidated 

to reveal an interaction between avian dendritic 

cells and IBV in which gga-miR-21 can regulate the 

defense mechanism against viruses in chickens. 

This method also provides defensive or therapeutic 

strategies against IBV infection [59]. 

Identification of high affinity Gallus gallus 

aminopeptidase (gAPN) 

Gallus gallus aminopeptidase (gAPN) is a zinc-

dependent metalloproteinase of M1 family [67, 68] 

having a molecular weight ~180 KDa [69]. In IBV 

genome, S1 protein facilitates attachment to viral 

receptors and entry into host cells [70, 71]. In vitro 

and in vivo results showed binding of gAPN high-

affinity phages to IBV S1 protein polyclonal 

antibody and IBV neutralizing antibodies 

production, respectively [72], having the ability to 

reduce IBV infection. However, the shortcoming is 

that the inhibition rates of gAPN high-affinity 

ligand to IBV infection were <80%. New methods 

are required to synthesize optimized peptides to 

improve antiviral activities, enhance phage 

immunogenicity or homologous vaccine 

development for various IBV receptors [72]. In vivo, 

IBV infection is highly mediated by DC-SIGN and 

L-SIGN distribution in hematopoietic cells, e.g., 

macrophages that can propagate IBV to other 

organs [73]. However, the intricacy of lectin-virus 

in IBV receptor complex needed to be unveiled.  

Haemagglutinin-sialosides interaction 

Sialic acid-containing carbohydrates or sialosides 

play a vital role in various biological events, 

including bacterial and viral infections [74]. IBVs 

are emerging and re-emerging viruses having 

hundreds of serotypes that vary in S1 subunit 

sequences on S protein. Due to high diversity, 

gamma-CoV also include members that lack sialic 

acid binding activity [74]. All IBV serotypes having 

sialic acid do not bind to glycans with the same 

strength depicting that sialic acid binding activity is 

a conserved feature of IBV [9]. Primary chicken 

kidney cells became resistant to two IBV strains 

(Baudette and M41) after removal of sialic acid 

from the cell surface by neuraminidase treatment 

[28]. Sialic acid isomers α 2,3-linkages bind on the 

epithelial cells of host chickens and gut of 

waterfowl [74]. If authentic sialoside for the 

cognate receptor is identified, more information 

from haemagglutinin-sialoside interaction will 

postulate better vaccine development to prevent this 

binding, thus blocking host infection [74]. However, 

it's not a simple task and intricacy needed to be 

determined.  

Immune responses from major 

histocompatibility complex (MHC) of congenic 

chicken lines 

Although there are similarities between 

mammalian and avian immune systems, still avian 

species have distinct mechanisms and 

immunological structures [75]. Exploring the 

immune response of chickens is a new domain 

against IBV control and resistance strategy. It's not 

merely bringing about genetics to chickens because 

some genetic traits among chicken breeds have less 

productive efficiency. Some researchers are trying 

to explore genetic lines in chickens that are 

resistant to IBV. Chicken breeding strategies as a 

selection tool for developing disease-resistant 

varieties may improve the overall efficiency of 

poultry production [76]. Key components in innate 

immune response and adaptive immune response 
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will give substrate to study and come up with new 

strategies that are different from vaccines. Innate 

and adaptive immune responses are influenced by 

genetics [76]. Exploring genetic resistance and 

innate immunity can assist in developing 

preventive strategies against IBV [77].  There 

would be variability of responses to IBV and 

should come up with different preventive strategies. 

In this specific domain, birds with different major 

histocompatibility complex (MHC) but having the 

same genetic and biological background are 

selected, so if such birds are challenged against 

IBV, they will have different responses because of 

variations in their major histocompatibility 

complexes (MHCs). MHC locus B has been proven 

to be resistant to various pathogens, including IBV 

[77-81]. MHC haplotypes B2 and B19 were 

resistant and susceptible to IBV M41 and ArkDPI 

challenges, respectively [82]. Strong linkages for 

various poultry diseases have been studied between 

MHC and resistance to infectious diseases [77] 

Components of the innate response to IBV might 

provide a better understanding of Newcastle 

disease and avian influenza. Resistant genes 

(MHC-B locus genes, MX1, OASL and IFITM3) 

can assist to postulate targets for future resistant 

genetic crosslinks to IBV [83]. In another in vivo 

experiment, MHC congenic chicken lines 331/B2 

and 335/B19 were challenged with IBV strain M41 

and ArkDPI in the trachea and after 60 hours, 

cytokines (IFNβ, IL-1β, IL-6, IL-10) genes 

expressions elucidated better performance of 

chicken congenic line 35/B19 showing more 

resistant against IBV [84]. While working on 

specific chicken lines of major histocompatibility 

complex (MHC), it should be kept in mind that 

these genetic lines are exclusively selected for their 

immune responses and traits that are inversely 

proportional to various production characteristics 

[85, 86], e.g., meanwhile seeing immunity 

responses, body weight is not ideal trait while 

working on specific layer chickens using MHC, but 

bodyweight is an ideal trait in case of broilers [87]. 

Serology 

Antibody-based detection methods are used to 

check IBV or immunological response in poultry 

flocks. Serological tests, including ELISA, agar gel 

precipitation (AGP), virus neutralization (VN) and 

hemagglutination inhibition are practiced. ELISA 

tests are routinely practiced in serological 
monitoring due to high efficiency and cost-

effectiveness. For accurate results, baseline values 

should be based on local geographical location 

because antibody titers depend on various factors, 

e.g., vaccination program, breed, sampling age, etc. 

Virus neutralization and hemagglutination 

inhibition are useful to check the specific response 

of vaccine and field serotypes because they can 

identify serotype-specific antibodies. However, 

hemagglutination inhibition is considered a better 

method for serotyping purposes. Virus 

neutralization is considered laborious for its 

routine monitoring. 

Zinc and Manganese supplementation in feed 

Trace minerals zinc (Zn) and manganese (Mn) have 

a major influence on immune responses. In the 

respiratory tract, Zn is an important regulator of the 

immune response [87]. They interfere with 

phagocytosis, cytokines production, inflammation, 

maturation, and differentiation of immune cells, 

e.g., macrophages. Zn and Mn are used as feed 

supplements of birds having the same genetic 

origin and their major histocompatibility (MHC) is 

linked to relative resistance or susceptibility to 

infectious diseases in general [82]. In a disease 

outbreak, airborne pathogens lower accessibility of 

Zn by descending presence of Zn carriers, which 

ultimately malfunctions immune response. In vitro, 

Zn blocks CoV RNA replication. Positive effects of 

amino acid bound Zn and Mn provide a gateway to 

other amino-acid bound minerals to improve their 

bioavailability in MHC congenic chicken lines [87]. 

Thus, these supplements have not been shown to 

protect specifically against IBV and postulates 

further investigation.  

Conclusion and challenges 

In the case of IBV control, everything is 

retrospective, there are techniques to know what 

evolutionary IBV takes and how rapidly it changed 

and be prepared for tomorrow, but we cannot 

predict future outbreaks. Despite adopting various 

preventive measures against IBV, there is still a 

long way to go. Worldwide, poultry industry is 

moving towards more judicious use of antibiotics 

and in most cases eliminating them, a new 

challenge for poultry industry. Lapse in diagnostic 

and preventive infrastructure also remains a hurdle 

in IBV control worldwide. Prevention is better than 

cure in the case of IBV, "eye of a storm". Academia 

and poultry industry needs practically more 

effective collaborations to develop better, effective, 

robust, and cost-effective methods and 

technologies to combat IBV.  
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